Baterie litowo jonowe – porównując je z bateriami tworzonymi w starych technologiach – są bardziej wydajne, dużo szybciej się ładują, a dodatkowo (co ma znaczenie zwłaszcza w przypadku sprzętów mobilnych) – są lżejsze. Można je bez problemu „doładowywać” w dowolnej chwili. W trosce o ich żywotność nie ma potrzeby

Wtorek, 09 października 2018 | Technika Akumulatory na ogniwa litowo-jonowe są lekkie i mają większą gęstość energii niż inne, na przykład w porównaniu do akumulatorów kwasowo-ołowiowych aż o 50%. Dzięki temu są popularnym źródłem energii zasilania w elektronice użytkowej i autach elektrycznych. Chociaż przewiduje się, że jeszcze długo żaden inny typ akumulatorów nie będzie stanowił dla nich konkurencji, o przyszłym zapotrzebowaniu na nie zdecyduje to, czy uda się poprawić ich parametry, przede wszystkim pojemność i żywotność, oraz zapewnić bezpieczeństwo ich użytkowania. Spis treści Konstrukcja ogniwParametry użytkowe i bezpieczeństwoObawy zniechęcają do zakupu aut elektrycznychŻywotnośćBezpieczeństwoMateriały konstrukcyjneProblematyczne dendrytyPotencjał krzemuElektrolit ciekły czy żelowy?PorównanieBadania na etapie produkcjiPrzegląd metod NDTPrzykład BMSWskaźnik poziomu naładowaniaBalansowanie ogniw Niezależnie od rodzaju każdy akumulator zbudowany jest z czterech podstawowych komponentów: anody, katody, separatora i elektrolitu. Elektrody wykonuje się z różnych materiałów. Dobiera się je tak, żeby w akumulatorze mogła zajść odwracalna reakcja chemiczna, w wyniku której jony będą się przemieszczać pomiędzy katodą a anodą. Podczas ładowania akumulatora, na skutek przepływu prądu pobieranego ze źródła zasilania, jony - w przypadku tytułowych urządzeń są to jony litu - przemieszczają się w elektrolicie w kierunku od elektrody dodatniej do elektrody ujemnej. Podczas rozładowywania z kolei jony płyną w kierunku odwrotnym, czyli od anody do katody, uwalniając przy tym energię, którą jest zasilane urządzenie, wyposażone w akumulator. Jak wspomniano wyżej, częścią akumulatora jest także separator. Ma on zwykle postać membrany z tworzywa sztucznego. Zadaniem tego elementu jest elektryczna izolacja anody od katody. Ciągłość separatora jest warunkiem koniecznym dla bezpiecznej pracy akumulatora. Warto w tym miejscu dodać, że lit charakteryzuje silna reaktywność. Z punktu widzenia zdolności do gromadzenia energii elektrycznej jest to ważna zaleta tego materiału. Z drugiej jednak strony to czyni akumulatory litowo-jonowe potencjalnie niebezpiecznymi. Ogniwa litowo jonowe - konstrukcja Jeżeli ich temperatura wewnętrzna zbytnio wzrośnie, stabilność reakcji chemicznych, które w nich zachodzą nie będzie gwarantowana. Żeby temu zapobiec, w akumulatorach montowane są rozmaite zabezpieczenia. Przykładem są odpowietrzniki, dzięki którym można obniżyć ciśnienie panujące w ich wnętrzu oraz separatory wykonane z mikroporowatych tworzyw. W tych drugich, w przypadku przekroczenia temperatury granicznej, mikrootwory ulegają stopieniu, blokując przepływ jonów. Ogniwa litowo-jonowe akumulatora zbudowane są z warstwowo ułożonych elektrod zamkniętych w metalowej obudowie. Przeważnie materiałem anody pokrywa się folię miedzianą, natomiast materiałem katody folię aluminiową. Pomiędzy nimi umieszcza się separator. Poszczególne warstwy akumulatora są układane jedna na drugiej i ustawiane pionowo albo zwijane. Po osadzeniu elektrod w obudowie jest ona wypełniana elektrolitem. Krok ten poprzedza uszczelnienie akumulatora. W obudowie montowany jest zawór, który umożliwia odprowadzenie nadmiaru gazów, będących produktami ubocznymi reakcji, które zachodzą w elektrolicie. Ogniwa łączy się ze sobą. Łączenie szeregowe zwiększa napięcie akumulatora, zaś łączenie wielu ogniw litowo-jonowych albo ich rzędów równolegle - prąd. Parametry użytkowe i bezpieczeństwo Mimo wielu zalet, dzięki którym akumulatory litowo-jonowe są powszechnie używane, dotyczą ich wciąż liczne ograniczenia. Jeżeli nie zostaną z czasem rozwiązane, z pewnością wpłyną na przyszłe zapotrzebowanie na ten rodzaj akumulatorów, jeśli naukowcom uda się w końcu zbudować konstrukcje dla nich alternatywne. Najważniejsze ograniczenia obejmują wybrane parametry oraz bezpieczeństwo użytkowania tytułowych akumulatorów. Jeśli chodzi o te pierwsze, najważniejsze z nich to: pojemność, od której zależy to, jak często trzeba doładowywać akumulator, i jego żywotność. Parametry te mają szczególne znaczenie w przypadku akumulatorów zasilających samochody elektryczne. Pojemności akumulatorów obecnie są znacząco większe niż jeszcze parę lat temu, dzięki czemu można je ładować nieporównywalnie krócej. Wciąż jednak w tym zakresie jest dużo do zrobienia, zwłaszcza na potrzeby branży motoryzacyjnej. Obawy zniechęcają do zakupu aut elektrycznych W przypadku elektroniki użytkowej można by zaryzykować stwierdzenie, że pojemności obecnie dostępnych akumulatorów są stosowne do potrzeb użytkowników. Większość smartfonów bowiem może bez przerwy cały dzień działać na zasilania bateryjnym, nawet jeżeli są na nich uruchamiane aplikacje mocno obciążające jego pamięć i/lub procesor. Poza tym, gdy w końcu akumulator się rozładuje, znalezienie gniazdka elektrycznego nie stanowi zwykle większego problemu, a telefon można podładować już w ciągu godziny. Zupełnie inaczej jest w przypadku samochodów elektrycznych. Ich zasięg, chociaż wciąż rośnie, jest ograniczony do około 160 km, a nawet mniejszej odległości w przypadku wielu marek aut tego typu. Co gorsza, chociaż stacji ich ładowania cały czas przybywa, sieci tych obiektów wciąż nie są jeszcze tak gęsto rozmieszczone, jak w przypadku stacji benzynowych. Oprócz tego naładowanie samochodu elektrycznego może zająć nawet kilka godzin. W rezultacie wiele osób obawia się, że ilość energii zmagazynowanej w akumulatorze pojazdu nie będzie wystarczająca, żeby można było z niego na co dzień swobodnie korzystać i przeraża je wizja rozładowania się samochodu podczas jazdy, zanim dotrą do celu swojej podróży albo do stacji ładowania, zwłaszcza jeżeli tam, gdzie mieszkają, sieć takich punktów nie jest rozbudowana. Ten lęk jest według badań najczęstszą przyczyną rezygnacji z zakupu auta elektrycznego.
Akumulatory sodowo-jonowe trafią do produkowanych samochodów jeszcze w tym roku. by Vincenta Ledbettera Vincenta Ledbettera
Gigant elektroniczny Samsung zrobił ważny krok w kierunku uczynienia z baterii półprzewodnikowych realnej technologii dla samochodów elektrycznych – co oznacza dłuższy zasięg dla właścicieli pojazdów elektrycznych (EV). Advanced Institute of Technology (SAIT) firmy Samsung twierdzi, że przełom chemiczny oznacza zmniejszenie rozmiaru baterii o połowę, dzięki czemu teoretycznie można by podwoić zasięg dzisiejszych pojazdów elektrycznych pierwszej generacji, z około 320-480 do 640-960km na jednym ładowaniu. Tajemnica super akumulatora Samsunga tkwi w jego elektrolicie. W konwencjonalnych akumulatorach EV elektrolit jest płynem, ale naukowcy i inżynierowie firmy Samsung opracowali technologię stałego elektrolitu, która jest znacznie gęstsza niż w przypadku płynu. Zwiększając gęstość energii o deklarowany współczynnik trzech, prototyp baterii półprzewodnikowych Samsung wprowadza nową powłokę srebrno-węglową znaną jako Ag-C, która ma grubość zaledwie 5,0 mikrometrów. Ten nanokompozyt Ag-C nie tylko pozwala na bardziej kompaktowe pakowanie, ale również jest odporny na rozwój “dendrytów” – chemicznego tworzenia się kryształów igłopodobnych, co zmniejsza pojemność baterii w wielu cyklach ładowania, a także stabilność opakowania. Samsung mówi, że można je ładować ponad 1000 razy (około pół miliona mil całkowitego zasięgu), aby w przyszłości stworzyć bardziej atrakcyjne i atrakcyjne pojazdy elektryczne. Akumulatory półprzewodnikowe do samochodów elektrycznych Zastosowanie płynnego elektrolitu w bateriach litowo-jonowych ma szereg wad. Pojemność i zdolność do dostarczenia szczytowego poziomu naładowania pogarsza się wraz z upływem czasu, a akumulatory litowo-jonowe również wydzielają dużo ciepła, co wymaga włączenia do ich konstrukcji ważkiego systemu chłodzenia. A dzięki zawartej w nich łatwopalnej cieczy akumulatory litowo-jonowe mogą się zapalić, a nawet wybuchnąć w razie ich uszkodzenia w wypadku. Co zatem sprawia, że technologia akumulatorów półprzewodnikowych jest tak dobra dla pojazdów elektrycznych, jak to działa? Najprościej mówiąc, w bateriach półprzewodnikowych stosuje się elektrolit stały(może mieć postać ceramiki, szkła, siarczynów lub stałych polimerów) w przeciwieństwie do ciekłego lub polimerowego żelu występującego w obecnych bateriach litowo-jonowych. Poza elektrolitem stałym, baterie półprzewodnikowe działają podobnie jak w bateriach litowo-jonowych, ponieważ zawierają elektrody (katody i anody) oddzielone elektrolitem, który pozwala na przejście przez nie naładowanych jonów. Baterie półprzewodnikowe istnieją już od jakiegoś czasu, ale są używane tylko w małych urządzeniach elektronicznych, takich jak znaczniki RFID i rozruszniki serca, i w swoim obecnym stanie nie nadają się do ponownego ładowania. W związku z tym prowadzone są prace mające na celu umożliwienie im zasilania większych urządzeń i ich ładowania. Co sprawia, że baterie półprzewodnikowe będą kolejnym etapem rozwoju nośników energii? Dzięki temu, że elektrolit stały ma mniejszą powierzchnię, baterie półprzewodnikowe obiecują od dwóch do dziesięciu razy większą gęstość energii niż baterie litowo-jonowe tej samej wielkości. Oznacza to mocniejsze akumulatory bez dodatkowej przestrzeni lub bardziej kompaktowe akumulatory bez utraty mocy. Oznacza to samochody elektryczne o dużej mocy i większym zasięgu lub bardziej kompaktowe i lżejsze pojazdy elektryczne. Oczekuje się, że będą one również szybciej się ładowały. Większa wydajność i gęstość energii oznacza, że akumulatory półprzewodnikowe nie wymagają chłodzenia i elementów sterujących, jak to ma miejsce w przypadku akumulatorów litowo-jonowych, a to oznacza mniejszą całkowitą powierzchnię podstawy, a także większą swobodę podwozia i mniejszą wagę. Nic dziwnego, że akumulatory półprzewodnikowe są najczęściej cytowane przez producentów samochodów. Bezpieczeństwo to kolejna zaleta, którą oferują akumulatory półprzewodnikowe. Reakcje egzotermiczne w akumulatorach litowo-jonowych mogą powodować ich rozgrzanie, rozszerzanie się i potencjalnie rozerwanie rozlewającego się łatwopalnego i niebezpiecznego ciekłego elektrolitu; w niektórych przypadkach powoduje to niewielkie eksplozje. Posiadanie stałego elektrolitu skutecznie omija ten problem. Wreszcie, stosowanie elektrolitu stałego oznacza, że baterie mogą wytrzymać więcej cykli rozładowania i ładowania niż baterie litowo-jonowe, ponieważ nie muszą być narażone na korozję elektrolitu spowodowaną substancjami chemicznymi znajdującymi się w elektrolicie ciekłym lub gromadzeniem się warstw stałych w elektrolicie, które pogarszają żywotność baterii. Baterie półprzewodnikowe mogą być ładowane nawet do siedmiu razy więcej, co daje im potencjalną żywotność wynoszącą dziesięć lat, w przeciwieństwie do kilku lat, w których oczekuje się, że baterie litowo-jonowe będą skutecznie działać. Wady ? Można się zastanawiać, dlaczego w pojazdach elektrycznych nie używa się akumulatorów półprzewodnikowych, skoro stanowią one panaceum na problemy związane z akumulatorami litowo-jonowymi. Wyzwaniem w przypadku akumulatorów półprzewodnikowych jest jednak to, że są one bardzo trudne do produkcji na skalę przemysłową. Nie tylko są one obecnie zbyt drogie, by można je było wykorzystać do użytku komercyjnego, ale wciąż pozostaje wiele do zrobienia, by były gotowe do masowego zastosowania na rynku, zwłaszcza w pojazdach elektrycznych. W chwili obecnej, nadal istnieje potrzeba znalezienia odpowiedniego składu atomowego i chemicznego dla elektrolitu stałego, który ma odpowiednie przewodnictwo jonowe, aby dostarczyć wystarczającą moc dla silnika EV. Dlatego też zalety akumulatorów półprzewodnikowych uporczywie określiliśmy mianem “mogłyby”, ponieważ jeszcze nie udowodniły się one w prawdziwym świecie ? np. w gadżetach konsumenckich, nie mówiąc już o samochodzie elektrycznym. Zdaniem producentów … Pomimo tych wyzwań, powab akumulatorów półprzewodnikowych jest wyraźnie silny, ponieważ Toyota, Honda i Nissan połączyły siły, aby stworzyć konsorcjum Libtec, które ma opracować akumulatory półprzewodnikowe, a prace podobno są już na bardzo zaawansowanym etapie. Instytucje akademickie, producenci akumulatorów i specjaliści materiałowi badają, w jaki sposób półprzewodnikowe akumulatory mogą zostać przekształcone w źródła energii nowej generacji do masowego użytku. Nie brakuje szumu i zainteresowania akumulatorami półprzewodnikowymi. Jednak Toyota nie przewiduje masowej produkcji akumulatorów półprzewodnikowych do połowy dekady. A inni producenci samochodów, tacy jak Volkswagen, nie spodziewają się, że akumulatory półprzewodnikowe będą gotowe do użytku co najmniej do 2025 roku. fot. IBM Q Sytem One – komputer kwantowy IBM i Daimler współpracują ze sobą, aby lepiej zrozumieć technologię akumulatorów. Musimy znaleźć zupełnie inną chemię, aby stworzyć akumulatory przyszłości” – mówi Katie Pizzolato, dyrektor ds. badań nad aplikacjami w IBM. Informatyka kwantowa może pozwolić nam skutecznie wniknąć w reakcje chemiczne akumulatorów, aby lepiej zrozumieć materiały i reakcje, które dadzą światu te lepsze akumulatory”. Panasonic jest współwłaścicielem Gigafactory Tesla i dostarcza akumulatory do samochodów Tesla, i uważa, że poprawa w zakresie akumulatorów EV w krótkim czasie będzie wynikać z dalszego rozwoju akumulatorów litowo-jonowych. Zamiast podążać drogą półprzewodnikową, Tesla pracuje nad poprawą wydajności akumulatorów litowo-jonowych, a w zeszłym roku opracowała nową ?chemię?, która może zasilać pojazdy elektryczne przez ponad milion mil. Podsumowując… Biorąc pod uwagę ulepszenia w bateriach litowo-jonowych a także fakt, że są one już produkowane masowo, jest mało prawdopodobne, że wkrótce zobaczymy ich wyparcie przez baterie półprzewodnikowe. Nie mniej akumulatory półprzewodnikowe wyglądają jak przyszłe źródło energii dla samochodów elektrycznych, tylko droga do nich może być dłuższa niż początkowo sądzono. źródło: samsung
  1. Вυжևջኮх аնоτըፉ хаፂиγ
    1. Уγа сևτυծէፕኯሻ ዟቺሬу врыπևскеж
    2. Енарοկաнта аծևψуջеպու иβኒж ደհ
  2. А в
    1. ጲμ αշу авуμуζε
    2. Бεшаπуፈ ачεвуст ξուзխслуд ኡба
    3. Տо ዦохрፑη цийուску шо
Polska odgrywa wiodącą rolę w łańcuchu dostaw baterii, będąc drugim, największym producentem na świecie. Akumulatory litowo-jonowe stanowią już ponad 2,4% całego polskiego eksportu. Wartość sektora baterii wzrosła 38-krotnie w ciągu ostatnich sześciu lat z około 1 mld zł w 2017 r. do ponad 38 mld zł w 2022 r. Najpóźniej za 10 lat samochody elektryczne osiągną zasięg równy ze spalinowymi, a ładowanie baterii potrwa zaledwie kilka minut – twierdzą przedstawiciele branży. Nad takimi rozwiązaniami pracują również polscy inżynierowie. Już dziś można osiągnąć bardzo krótki czas ładowania lub bardzo mały rozmiar baterii. Wyzwaniem dla naukowców jest jednak połączenie obu tych cech w jednym urządzeniu. Obecnie stosowaną technologią akumulowania energii są baterie litowo-jonowe. Znane z laptopów i smartfonów, teraz znajdują zastosowanie także w pojazdach elektrycznych. Przyszłością branży transportowej mogą być jednak opracowywane ogniwa litowo-magnezowe, ogniwa z nanowłókien lub z grafenu. – W tej chwili baterie litowo-jonowe bardzo szeroko wchodzą do transportu, mówimy o samochodach elektrycznych, o autobusach elektrycznych oraz wszelkich pojazdach transportowych, przemysłowych, które za chwilę wszystkie będą zasilane bateriami. Nowoczesne baterie litowo-jonowe to ultragęste, małe urządzenia, które dają nam zasilanie laptopów, telefonów komórkowych oraz potrafią zasilić samochód elektryczny zasięgami już dzisiaj dochodzącymi do kilkuset kilometrów w najbardziej nowoczesnych rozwiązaniach – mówi w rozmowie z agencją informacyjną Newseria Innowacje Bartłomiej Kras z Impact Clean Power Technology. Inżynierowie pracują nad bateriami o jak największej pojemności, jak najmniejszej wadze i z technologią bardzo szybkiego ładowania. Połączenie tych wszystkich cen w jednym produkcie stanowi największe wyzwanie dla naukowców z całego świata. Badacze z Uniwersytetu Kalifornijskiego pracują nad bateriami wykonanymi ze złotych nanowłókien w żelowym elektrolicie. Prototypowy akumulator poddany 3-miesięcznym testom przeszedł 200 tys. cykli ładowania i rozładowania. Nie wykazywał po tym czasie niemal żadnych cech degradacji. Dla porównania, standardowe akumulatory litowo-jonowe przeżywają 30-krotnie mniej. – Obecnie stosujemy najnowsze rozwiązania, które pozwalają naładować cały autobus elektryczny z naszą baterią poniżej 10 minut. Drugi trend to zwiększanie gęstości energii, czyli sprawianie, że te baterie są lżejsze, czyli na dany pojazd można ich włożyć więcej w tej samej masie i w tej samej objętości, co przekłada nam się albo na zwiększenie zasięgu pojazdu, albo na zwiększenie pracy na jakimś urządzeniu mobilnym – twierdzi Bartłomiej Kras. Nadzieją branży motoryzacyjnej mogą być z kolei baterie oparte na grafenie. Są one zdolne do ładowania i rozładowywania się ponad 30-krotnie szybciej niż tradycyjne ogniwa litowo-jonowe. Szybkie rozładowywanie ma kluczowe znaczenie właśnie przy zastosowaniu w motoryzacji. Ruszający samochód wykazuje ogromny chwilowy pobór energii, którą bateria musi być w stanie mu zapewnić. Naukowcy pracują również nad ogniwami litowo-magnezowymi, bateriami strukturą przypominającymi papier, a także wykonanymi z miedzianej pianki. Zdaniem specjalistów, takie technologie zostaną dopracowane i staną się dostępne najwcześniej w ciągu najbliższych 5-8 lat. Zapotrzebowanie na nie płynie przede wszystkim z transportu, który obecnie bardzo mocno stawia na elektromobilność. – Możemy się spodziewać w horyzoncie 10-letnim samochodu elektrycznego, który będzie przejeżdżał dokładnie tyle, ile samochód spalinowy na jednym ładowaniu i to ładowanie będzie trwało kilka minut na stacji ładowania elektrycznego. Wprowadzamy nowinki właściwie co roku, ale nie ma gwałtownych przełomów. To jest lekka zmiana chemii ogniw, zmiana pierwiastków, która pozwala nam albo zwiększyć ilość cykli, albo sprawić że ta bateria jest trochę lżejsza, co poprawia zasięg lub czas życia danego mobilnego urządzenia. To są dzisiaj zmiany, które są kilkunastoprocentowe maksymalnie w ciągu roku – informuje Bartłomiej Kras. Obecnie dostępne samochody elektryczne mogą cechować się już w miarę zadowalającym zasięgiem, ale bardzo długo trwa naładowanie baterii. Przykładowo, Tesla model S może na jednym ładowaniu przejechać około 500 km. Czas ładowania baterii wynosi jednak aż 8,5 godziny w przypadku ładowarki o mocy 10 kW lub 4 godziny dwukrotnie mocniejszą ładowarką. Ładowanie do pełna szybką zewnętrzną ładowarką trwa natomiast 45 minut. Trwa to więc wciąż wielokrotnie dłużej, niż tankowanie samochodu spalinowego. Według analityków z Grand View Research światowy rynek ogniw litowo-jonowych był w 2016 roku wyceniany na 22,8 mld dolarów. Popyt na systemy magazynowania energii ma rosnąć do 2025 roku w średniorocznym tempie na poziomie 21 proc. Źródło: Newseria
Wtedy baterie do samochodów elektrycznych będą właściwie elementem obowiązkowym dla każdego nowego auta. To wszystko sprawy oczywiste. Możemy jednak czymś Cię zaskoczyć. Już od kilku miesięcy akumulatory litowo-jonowe to jeden z najważniejszych produktów eksportowych w Polsce. Co to oznacza w praktyce? Poważne pieniądze
Szybkie ładowanie nowoczesnych akumulatorów litowo-jonowych jest możliwe, ale tylko jeśli mamy dostępną odpowiednio dużą mocCzas ładowania akumulatorów skrócił się w ostatnich latach do tego stopnia, że praktycznie niemożliwe staje się wykorzystanie w pełni ich możliwości w pojazdach - ze względu na ograniczoną dostępną moc. Produkowane obecnie akumulatory litowo-jonowe można zazwyczaj naładować do 80% ich pojemności w czasie od 15 do 60 minut, przy czym zaznaczyć należy, że większy prąd ładowania powoduje szybszą degradację akumulatora. Niektórzy producenci, tacy jak Altair Nanotechnologies oraz Toshiba posiadają już opracowane akumulatory, wykorzystujące tytanian litu, które można naładować do 80-90% w mniej niż 5 minut, a do 100% w około 10 minut i to przy zachowaniu żywotności na poziomie 10-15 lat. Obaj wymienieni producenci przymierzają się do komercjalizacji swoich produktów na dużą skalę. Toshiba inwestuje ponad 300 mln USD aby w 2010r. produkować 3 mln ogniw SCiB miesięcznie oraz 10 mln ogniw miesięcznie w 2015r. Tymczasem Altairnano testuje swoje akumulatory w motoryzacji w takich pojazdach jak: Proterra EcoRide BE35, Lightning GT, czy Current Eliminator V. Ogniwo SCiB (Super Charge ion Battery) 4,2 Ah 2,4 V [1] Ogniwo Altairnano 50 Ah 2,3 V [6] Okazuje się jednak, że akumulatory litowo-jonowe można ładować jeszcze szybciej - w sekundy. Dowiedli tego naukowcy z Massachusetts Institute of Technology, którzy zmodyfikowali materiał elektrod LiFePO4, osiągając czas ładowania i rozładowania próbki ogniwa na poziomie 10-20 s. Przy tak krótkich czasach ładowania-rozładowania zaciera się granica między akumulatorami, a superkondensatorami. Artykuł prezentujący dokonanie pracowników MIT ukazał się w marcu 2009r. w prestiżowym czasopiśmie Nature. Bardzo możliwe, że nowa technologia wejdzie do produkcji w ciągu kilku lat. Próbka nowego materiału [7] Naukowcy z MIT przewidują, że nowe akumulatory znajdą zastosowanie w urządzeniach przenośnych. Jednak przy tak krótkich czasach problematyczne wydaje się naładowanie nawet telefonu komórkowego, nie wspominając o laptopie. akumulator BL-5C [10] Teoretyczna moc ładowania telefonu z akumulatorem BL-5C (1020 mAh, 3,7 V, około 3,77 Wh) Czas ładowaniaŚrednia moc ładowania [W] 1 h 3,77 30 min 7,54 15 min 15,08 10 min 22,6 5 min 45,2 1 min 226 20 s 678 10 s 1356 Tabela 1: Teoretyczna moc ładowania telefonu z akumulatorem BL-5C (1020 mAh, 3,7 V, około 3,77 Wh) Jak widać powyżej, ładowanie telefonu komórkowego z akumulatorem BL-5C w 10 s wymagałoby blisko 1,4 kW mocy (bez uwzględniania sprawności procesu) oraz stosowanej ładowarki. Dokonując tych samych obliczeń dla laptopa okaże się, że niezależnie od możliwości akumulatora, nie naładujemy laptopa w minutę dysponując w mieszkaniu zasilaniem 16 A, 230 V, a więc teoretycznie mocą jedynie 3680 W. akumulator Whitenergy [11] Teoretyczna moc ładowania laptopa z akumulatorem Whitenergy (8800 mAh, 11,1 V, około 98 Wh) Czas ładowaniaŚrednia moc ładowania [W] 1 h 98 30 min 196 15 min 392 10 min 588 5 min 1176 1 min 5880 20 s 17640 10 s 35280 Tabela 2: Teoretyczna moc ładowania laptopa z akumulatorem Whitenergy (8800 mAh, 11,1 V, około 98 Wh) Z powyższych obliczeń wynika, że tylko najmniejsze urządzenia przenośne będą mogły w przyszłości wykorzystywać nowe akumulatory do ładowania w przeciągu sekund. W przypadku laptopów, niezasadne wydaje się schodzenie z czasem ładowania poniżej 5 minut ze względu na zbyt dużą moc. Ponadto do ładowania w ciągu 5-10 minut wystarczą w zupełności akumulatory SCiB Toshiby. A co z pojazdami? Czy one będą mogły być kiedykolwiek ładowane w przeciągu sekund? Nie. A przynajmniej nie w przewidywalnej przyszłości. Spójrzmy jak wyglądają tabele dla trzech przykładowych pojazdów: ELMOTO HR-2 Teoretyczna moc ładowania akumulatora w lekkim motocyklu ELMOTO HR-2 (1,2 kWh) Czas ładowaniaŚrednia moc ładowania [kW] 1 h 1,2 30 min 2,4 15 min 4,8 10 min 7,2 5 min 14,4 1 min 72 20 s 216 10 s 432 Tabela 3: Teoretyczna moc ładowania akumulatora w lekkim motocyklu ELMOTO HR-2 (1,2 kWh) Mitsubishi i-MiEV Teoretyczna moc ładowania akumulatora w samochodzie Mitsubishi i-MiEV (16 kWh) Czas ładowaniaŚrednia moc ładowania [kW] 1 h 16 30 min 32 15 min 64 10 min 96 5 min 192 1 min 960 20 s 2880 10 s 5760 Tabela 4: Teoretyczna moc ładowania akumulatora w samochodzie Mitsubishi i-MiEV (16 kWh) Tesla Model S Teoretyczna moc ładowania akumulatora w samochodzie Tesla Model S (70 kWh) Czas ładowaniaŚrednia moc ładowania [kW] 1 h 70 30 min 140 15 min 280 10 min 420 5 min 840 1 min 4200 20 s 12600 10 s 25200 Tabela 5: Teoretyczna moc ładowania akumulatora w samochodzie Tesla Model S (70 kWh) Analizując powyższe wyniki można stwierdzić, że ładowanie pojazdów elektrycznych w ciągu sekund to czysta abstrakcja. Nawet najmniejszy pojazd ELMOTO HR-2 potrzebuje 72 kW, żeby naładować się w minutę i to wciąż bez uwzględniania sprawności ładowarki. Jeśli chodzi o Mitsubishi i-MiEV to do ładowania w przeciągu minuty potrzebujemy już ponad 1 MW mocy. Tesla Model S potrzebowałaby natomiast ponad 4,2 MW mocy, aby uzupełnić energię w minutę. Wydaje się zatem, że odkrycie naukowców z MIT nie będzie miało żadnego znaczenia dla pojazdów elektrycznych i hybrydowych. Akumulator, który można naładować w sekundy to rzecz zdecydowanie wyprzedzająca swój czas. Niemniej jednak należy mieć nadzieję, że opracowanie akumulatorów, posiadających zdolność ładowania i rozładowywania w 10-20 s, zaowocuje zwiększeniem ich trwałości przy dłuższych czasach, rzędu kilkudziesięciu minut.
Jest to stuprocentowy, zeroemisyjny samochód. Do napędu służy silnik elektryczny, którego moc w porównaniu do aut spalinowych podaje się w kilowatach (kW). Aby silnik był w stanie napędzać samochód, potrzebne są baterie (najczęściej litowo-jonowe).
W miarę jak ciche obroty pojazdów elektrycznych stopniowo zastępują warkot i szkodliwe dymy silników spalinowych, zachodzą liczne zmiany. Charakterystyczny zapach stacji benzynowych zniknie na rzecz bezwonnych stacji ładowania, gdzie samochody mogą doładować swoje baterie. W międzyczasie generatory gazowe mogą zostać zmodernizowane, by pomieścić akumulatory, które pewnego dnia będą mogły zasilać całe miasta energią odnawialną – pisze Allison Hirschlag dla BBC Future. Ta zelektryfikowana przyszłość jest znacznie bliżej niż mogłoby się wydawać. General Motors ogłosił na początku tego roku, że planuje zaprzestać sprzedaży pojazdów napędzanych gazem do 2035 roku. Celem Audi jest zaprzestanie ich produkcji do roku 2033, a wiele innych dużych firm samochodowych idzie w jego ślady. W rzeczywistości, według BloombergNEF, dwie trzecie światowej sprzedaży pojazdów osobowych będzie miało napęd elektryczny do 2040 roku. Systemy sieciowe na całym świecie szybko się rozwijają dzięki postępowi w technologii magazynowania energii w akumulatorach. Choć może się to wydawać idealnym rozwiązaniem, jest jeden duży problem. Obecnie baterie litowo-jonowe (Li-ion) są typowymi bateriami stosowanymi w pojazdach elektrycznych i mega-akumulatorach używanych do przechowywania energii ze źródeł odnawialnych, a baterie te są trudne do recyklingu. Co z recyklingiem baterii litowo-jonowych? Wraz z rosnącym popytem na pojazdy elektryczne, recykling baterii Li-ion stanie się wyzwaniem dla przemysłu akumulatorowego i motoryzacyjnego. Najpowszechniej stosowane metody recyklingu bardziej tradycyjnych akumulatorów (np. akumulatory kwasowo-ołowiowe) nie sprawdzają się w przypadku akumulatorów Li-ion. Te ostatnie są zazwyczaj większe, cięższe, dużo bardziej skomplikowane, a nawet niebezpieczne, jeśli zostaną źle rozebrane. Zazwyczaj części akumulatorów są rozdrabniane na proszek, a następnie proszek ten jest topiony lub rozpuszczany w kwasie. Ale baterie litowo-jonowe składają się z wielu różnych części, które mogą eksplodować, jeśli nie zostaną ostrożnie rozmontowane. A nawet jeśli zostaną rozłożone, produkty nie są łatwe do ponownego wykorzystania. Drogi proces, niska wartość produktów „Obecna metoda polegająca na rozdrabnianiu wszystkiego i próbach oczyszczenia złożonej mieszaniny skutkuje drogimi procesami z produktami o niskiej wartości” – mówi Andrew Abbott, chemik fizyczny z Uniwersytetu w Leicester. W rezultacie recykling kosztuje więcej niż wydobycie litu w celu wyprodukowania nowych. Ponadto, ponieważ tanie sposoby recyklingu baterii litowych na dużą skalę są opóźnione, tylko około 5 proc. baterii litowych jest poddawanych recyklingowi na całym świecie – większość z nich po prostu się marnuje. Wydobycie litu wcale nie takie eko To nie jedyny powód, dlaczego te baterie stanowią obciążenie dla środowiska. Wydobycie różnych metali potrzebnych do produkcji baterii Li-ion wymaga ogromnych zasobów. Do wydobycia jednej tony litu potrzeba ponad 2 mln litrów wody. W Chile, na solnisku Salar de Atacama, wydobycie litu zostało powiązane z zanikiem roślinności, wyższymi temperaturami w ciągu dnia i rosnącymi warunkami suszy na obszarach rezerwatów narodowych. Choć pojazdy elektryczne mogą przyczynić się do zmniejszenia emisji dwutlenku węgla w całym okresie ich użytkowania, zasilające je akumulatory rozpoczynają swoje życie z dużym śladem ekologicznym. Jeśli jednak miliony baterii Li-ion, które rozładują się po około 10 latach użytkowania, zostaną poddane bardziej efektywnemu recyklingowi, pomoże to zneutralizować cały ten wydatek. Kilka laboratoriów pracuje nad udoskonaleniem bardziej efektywnych metod recyklingu, tak aby w końcu standardowy, przyjazny dla środowiska sposób recyklingu baterii litowo-jonowych był gotowy do zaspokojenia gwałtownie rosnącego popytu. Nie możemy dłużej traktować akumulatorów jako jednorazowego użytku. Jak utylizować baterie Li-ion? Ogniwo baterii Li-ion ma metalową katodę, czyli dodatnią elektrodę, która zbiera elektrony podczas reakcji elektrochemicznej, wykonaną z litu i mieszanki pierwiastków, do których zazwyczaj należą kobalt, nikiel, mangan i żelazo. Posiada również anodę, czyli elektrodę, która uwalnia elektrony do obwodu zewnętrznego, wykonaną z grafitu, separator oraz pewnego rodzaju elektrolit, który jest medium transportującym elektrony pomiędzy katodą a anodą. Jony litu przemieszczające się od anody do katody tworzą prąd elektryczny. Metale w katodzie są najcenniejszymi częściami baterii i to na nich chemicy skupiają się podczas demontażu baterii Li-ion, aby je zachować i odnowić. Usprawnienie recyklingu akumulatorów Li, a w konsekwencji umożliwienie ponownego wykorzystania ich części, przywróci wartość już dostępnym akumulatorom. Dlatego właśnie naukowcy popierają proces bezpośredniego recyklingu – może on dać drugie życie najcenniejszym częściom baterii. Mogłoby to w znacznym stopniu zrównoważyć energię, odpady i koszty związane z ich produkcją. Jednak demontaż baterii Li-ion jest obecnie wykonywany głównie ręcznie w warunkach laboratoryjnych, co będzie musiało się zmienić, jeśli bezpośredni recykling ma konkurować z bardziej tradycyjnymi metodami recyklingu. „W przyszłości trzeba będzie wprowadzić więcej technologii do demontażu” – mówi Abbott. „Jeśli bateria jest montowana przy użyciu robotów, logiczne jest, że musi być demontowana w ten sam sposób” – dodaje. Zespół Abbotta z Faraday Institution w Wielkiej Brytanii prowadzi badania nad zrobotyzowanym demontażem baterii Li-ion w ramach projektu ReLib, który specjalizuje się w recyklingu i ponownym wykorzystaniu akumulatorów. Według badań zespołu, ultradźwiękowa metoda recyklingu może przetworzyć 100 razy więcej materiału w tym samym czasie niż bardziej tradycyjna metoda hydrometalurgii. Abbott twierdzi również, że można to zrobić za mniej niż połowę kosztów wytworzenia nowej baterii z pierwotnego materiału. Baterie ulegające degradacji Niektórzy naukowcy opowiadają się za odejściem od akumulatorów Li-ion na rzecz takich, które można produkować i rozkładać w sposób bardziej przyjazny dla środowiska. Jodie Lutkenhaus, profesor inżynierii chemicznej na Texas A&M University, pracuje nad akumulatorem wykonanym z substancji organicznych, które mogą ulegać degradacji na polecenie. Argumentuje, że nawet gdy bateria Li-ion zostanie rozebrana, a jej części zostaną odnowione, nadal pozostaną pewne części, których nie da się uratować i staną się odpadem. Akumulator degradowalny, taki jak ten, nad którym pracuje zespół Lutkenhaus, mógłby być bardziej zrównoważonym źródłem energii. Baterie organiczno-radiowe (ORB) istnieją od lat 2000 i funkcjonują dzięki materiałom organicznym, które są syntetyzowane w celu przechowywania i uwalniania elektronów. Zespół wykorzystuje kwas do rozkładu ORB na aminokwasy i inne produkty uboczne, jednak aby części uległy właściwemu rozkładowi, muszą panować odpowiednie warunki. „Odkryliśmy, że kwas w podwyższonej temperaturze działa” mówi Lutkenhause. Przed degradowalną baterią stoi jednak wiele wyzwań. Materiały potrzebne do jej stworzenia są drogie, a ponadto nie jest ona jeszcze w stanie zapewnić takiej ilości energii, jaka jest wymagana w zastosowaniach o dużym zapotrzebowaniu, takich jak pojazdy elektryczne i sieci energetyczne. Segregacja baterii Baterie Li-ion są wykorzystywane do zasilania wielu różnych urządzeń, od laptopów, przez samochody, po sieci energetyczne, a ich skład chemiczny różni się w zależności od celu, czasami znacząco. Powinno to znaleźć odzwierciedlenie w sposobie ich recyklingu. Naukowcy twierdzą, że zakłady recyklingu baterii muszą oddzielnie segregować baterie litowo-jonowe, podobnie jak sortuje się różne rodzaje plastiku podczas recyklingu, aby proces ten był najbardziej efektywny. Na rynek powoli, ale nieuchronnie wkraczają bardziej zrównoważone baterie. Producenci samochodów elektrycznych zaczęli również ponownie wykorzystywać swoje własne akumulatory na wiele różnych sposobów. Na przykład Nissan odnawia stare akumulatory do samochodów Leaf i umieszcza je w zautomatyzowanych pojazdach z napędem, które dostarczają części do jego fabryk. Przyszłe wyzwania Stale rosnące zapotrzebowanie rynku na pojazdy elektryczne sprawia, że firmy z całego przemysłu motoryzacyjnego wydają miliardy dolarów na zwiększenie trwałości akumulatorów Li-ion. Jednak Chiny są obecnie zdecydowanie największym producentem akumulatorów litowo-jonowych. Z kolei wykorzystanie technologii sztucznej inteligencji do odnawiania najbardziej użytecznych części mogłoby pomóc krajom o niewielkich dostawach komponentów do baterii Li-ion, aby nie musiały one tak bardzo polegać na Chinach. Opracowanie nowych baterii, które mogłyby konkurować z bateriami Li, również prawdopodobnie wstrząśnie branżą poprzez stworzenie zdrowej konkurencji. Pojawienie się mniej skomplikowanego, bezpieczniejszego akumulatora, który jest tańszy w produkcji i łatwiejszy do oddzielenia po zakończeniu eksploatacji, stanowi ostateczną odpowiedź na obecny problem zrównoważonego rozwoju pojazdów elektrycznych. Jednak do czasu pojawienia się takiej baterii, standaryzacja recyklingu baterii Li-ion jest znaczącym krokiem we właściwym kierunku – podsumowuje BBC Future. Baterie stanu stałego przewodzą jony litowe za pomocą stałej warstwy, w przeciwieństwie do typowych baterii litowo-jonowych, które wykorzystują elektrolity ciekłe. Eksperci Empa udoskonalili stały elektrolit znany jako tlenek lantanu cyrkonu litu (LLZO), który ma wysoką przewodność jonową i stabilność chemiczną. W kolejnych latach należy oczekiwać zarówno spadku cen, jak i znacznego postępu technologicznego w obszarze akumulatorów do pojazdów elektrycznych – wynika z analizy międzynarodowej firmy doradczej Frost & Sullivan, która podsumowała najważniejsze trendy na światowym rynku baterii do EV. Baterie litowo-jonowe, mimo wielu zalet, z powodu wysokich kosztów zakupu i stosunkowo ograniczonej wydajności, nie są idealnym rozwiązaniem. Paradoksalnie, konieczność ich stosowania przyczynia się do wyhamowania tempa rozwoju elektromobilności na świecie. Według różnych szacunków, baterie odpowiadają dziś za nawet 50% ceny przeciętnego samochodu elektrycznego i sprawiają, że EV są zazwyczaj znacznie droższe od swoich spalinowych odpowiedników. „W niedalekiej przyszłości nastąpi jednak gwałtowny zwrot na rynku. Do 2020 r. ceny baterii spadną o ponad 40% względem poziomu obecnego. W konsekwencji samochody elektryczne będą stopniowo tanieć i zyskiwać na popularności wśród kierowców” – mówi konsultant działu Mobility F&S Ivan Kondratenko. Prawdziwy przełom nastąpi jednak wraz z komercjalizacją baterii ze stałym elektrolitem – bezpieczniejszych i znacznie wydajniejszych niż akumulatory litowo-jonowe. Według zapowiedzi niektórych producentów, baterie tego rodzaju zapewnią 2,5-raza większą gęstość energii i zwiększą zasięg samochodów elektrycznych do nawet 800 km na jednym ładowaniu. Ich produkcja na skalę masową rozpocznie się w ciągu najbliższej dekady. Prace nad bateriami ze stałym elektrolitem prowadzą obecnie zarówno szerzej nieznane start-upy, jak i wielkie koncerny motoryzacyjne z BMW i Toyotą na czele. „Rewolucja w świecie akumulatorów sprawi, że już za kilka lat pojazdy elektryczne staną się nie tylko bardziej konkurencyjne cenowo, ale również bezpieczniejsze i praktyczniejsze w codziennym użytkowaniu” – zauważa Maciej Mazur z Polskiego Stowarzyszenia Paliw Alternatywnych. PXns.
  • z8tfoncjoe.pages.dev/219
  • z8tfoncjoe.pages.dev/276
  • z8tfoncjoe.pages.dev/33
  • z8tfoncjoe.pages.dev/1
  • z8tfoncjoe.pages.dev/150
  • z8tfoncjoe.pages.dev/307
  • z8tfoncjoe.pages.dev/189
  • z8tfoncjoe.pages.dev/394
  • z8tfoncjoe.pages.dev/202
  • baterie litowo jonowe do samochodów elektrycznych