- Вυжևջኮх аնоτըፉ хаፂиγ
- Уγа сևτυծէፕኯሻ ዟቺሬу врыπևскеж
- Енарοկաнта аծևψуջеպու иβኒж ደհ
- А в
- ጲμ αշу авуμуζε
- Бεшаπуፈ ачεвуст ξուзխслуд ኡба
- Տо ዦохрፑη цийուску шо
Wtedy baterie do samochodów elektrycznych będą właściwie elementem obowiązkowym dla każdego nowego auta. To wszystko sprawy oczywiste. Możemy jednak czymś Cię zaskoczyć. Już od kilku miesięcy akumulatory litowo-jonowe to jeden z najważniejszych produktów eksportowych w Polsce. Co to oznacza w praktyce? Poważne pieniądze
Szybkie ładowanie nowoczesnych akumulatorów litowo-jonowych jest możliwe, ale tylko jeśli mamy dostępną odpowiednio dużą mocCzas ładowania akumulatorów skrócił się w ostatnich latach do tego stopnia, że praktycznie niemożliwe staje się wykorzystanie w pełni ich możliwości w pojazdach - ze względu na ograniczoną dostępną moc. Produkowane obecnie akumulatory litowo-jonowe można zazwyczaj naładować do 80% ich pojemności w czasie od 15 do 60 minut, przy czym zaznaczyć należy, że większy prąd ładowania powoduje szybszą degradację akumulatora. Niektórzy producenci, tacy jak Altair Nanotechnologies oraz Toshiba posiadają już opracowane akumulatory, wykorzystujące tytanian litu, które można naładować do 80-90% w mniej niż 5 minut, a do 100% w około 10 minut i to przy zachowaniu żywotności na poziomie 10-15 lat. Obaj wymienieni producenci przymierzają się do komercjalizacji swoich produktów na dużą skalę. Toshiba inwestuje ponad 300 mln USD aby w 2010r. produkować 3 mln ogniw SCiB miesięcznie oraz 10 mln ogniw miesięcznie w 2015r. Tymczasem Altairnano testuje swoje akumulatory w motoryzacji w takich pojazdach jak: Proterra EcoRide BE35, Lightning GT, czy Current Eliminator V. Ogniwo SCiB (Super Charge ion Battery) 4,2 Ah 2,4 V [1] Ogniwo Altairnano 50 Ah 2,3 V [6] Okazuje się jednak, że akumulatory litowo-jonowe można ładować jeszcze szybciej - w sekundy. Dowiedli tego naukowcy z Massachusetts Institute of Technology, którzy zmodyfikowali materiał elektrod LiFePO4, osiągając czas ładowania i rozładowania próbki ogniwa na poziomie 10-20 s. Przy tak krótkich czasach ładowania-rozładowania zaciera się granica między akumulatorami, a superkondensatorami. Artykuł prezentujący dokonanie pracowników MIT ukazał się w marcu 2009r. w prestiżowym czasopiśmie Nature. Bardzo możliwe, że nowa technologia wejdzie do produkcji w ciągu kilku lat. Próbka nowego materiału [7] Naukowcy z MIT przewidują, że nowe akumulatory znajdą zastosowanie w urządzeniach przenośnych. Jednak przy tak krótkich czasach problematyczne wydaje się naładowanie nawet telefonu komórkowego, nie wspominając o laptopie. akumulator BL-5C [10] Teoretyczna moc ładowania telefonu z akumulatorem BL-5C (1020 mAh, 3,7 V, około 3,77 Wh) Czas ładowaniaŚrednia moc ładowania [W] 1 h 3,77 30 min 7,54 15 min 15,08 10 min 22,6 5 min 45,2 1 min 226 20 s 678 10 s 1356 Tabela 1: Teoretyczna moc ładowania telefonu z akumulatorem BL-5C (1020 mAh, 3,7 V, około 3,77 Wh) Jak widać powyżej, ładowanie telefonu komórkowego z akumulatorem BL-5C w 10 s wymagałoby blisko 1,4 kW mocy (bez uwzględniania sprawności procesu) oraz stosowanej ładowarki. Dokonując tych samych obliczeń dla laptopa okaże się, że niezależnie od możliwości akumulatora, nie naładujemy laptopa w minutę dysponując w mieszkaniu zasilaniem 16 A, 230 V, a więc teoretycznie mocą jedynie 3680 W. akumulator Whitenergy [11] Teoretyczna moc ładowania laptopa z akumulatorem Whitenergy (8800 mAh, 11,1 V, około 98 Wh) Czas ładowaniaŚrednia moc ładowania [W] 1 h 98 30 min 196 15 min 392 10 min 588 5 min 1176 1 min 5880 20 s 17640 10 s 35280 Tabela 2: Teoretyczna moc ładowania laptopa z akumulatorem Whitenergy (8800 mAh, 11,1 V, około 98 Wh) Z powyższych obliczeń wynika, że tylko najmniejsze urządzenia przenośne będą mogły w przyszłości wykorzystywać nowe akumulatory do ładowania w przeciągu sekund. W przypadku laptopów, niezasadne wydaje się schodzenie z czasem ładowania poniżej 5 minut ze względu na zbyt dużą moc. Ponadto do ładowania w ciągu 5-10 minut wystarczą w zupełności akumulatory SCiB Toshiby. A co z pojazdami? Czy one będą mogły być kiedykolwiek ładowane w przeciągu sekund? Nie. A przynajmniej nie w przewidywalnej przyszłości. Spójrzmy jak wyglądają tabele dla trzech przykładowych pojazdów: ELMOTO HR-2 Teoretyczna moc ładowania akumulatora w lekkim motocyklu ELMOTO HR-2 (1,2 kWh) Czas ładowaniaŚrednia moc ładowania [kW] 1 h 1,2 30 min 2,4 15 min 4,8 10 min 7,2 5 min 14,4 1 min 72 20 s 216 10 s 432 Tabela 3: Teoretyczna moc ładowania akumulatora w lekkim motocyklu ELMOTO HR-2 (1,2 kWh) Mitsubishi i-MiEV Teoretyczna moc ładowania akumulatora w samochodzie Mitsubishi i-MiEV (16 kWh) Czas ładowaniaŚrednia moc ładowania [kW] 1 h 16 30 min 32 15 min 64 10 min 96 5 min 192 1 min 960 20 s 2880 10 s 5760 Tabela 4: Teoretyczna moc ładowania akumulatora w samochodzie Mitsubishi i-MiEV (16 kWh) Tesla Model S Teoretyczna moc ładowania akumulatora w samochodzie Tesla Model S (70 kWh) Czas ładowaniaŚrednia moc ładowania [kW] 1 h 70 30 min 140 15 min 280 10 min 420 5 min 840 1 min 4200 20 s 12600 10 s 25200 Tabela 5: Teoretyczna moc ładowania akumulatora w samochodzie Tesla Model S (70 kWh) Analizując powyższe wyniki można stwierdzić, że ładowanie pojazdów elektrycznych w ciągu sekund to czysta abstrakcja. Nawet najmniejszy pojazd ELMOTO HR-2 potrzebuje 72 kW, żeby naładować się w minutę i to wciąż bez uwzględniania sprawności ładowarki. Jeśli chodzi o Mitsubishi i-MiEV to do ładowania w przeciągu minuty potrzebujemy już ponad 1 MW mocy. Tesla Model S potrzebowałaby natomiast ponad 4,2 MW mocy, aby uzupełnić energię w minutę. Wydaje się zatem, że odkrycie naukowców z MIT nie będzie miało żadnego znaczenia dla pojazdów elektrycznych i hybrydowych. Akumulator, który można naładować w sekundy to rzecz zdecydowanie wyprzedzająca swój czas. Niemniej jednak należy mieć nadzieję, że opracowanie akumulatorów, posiadających zdolność ładowania i rozładowywania w 10-20 s, zaowocuje zwiększeniem ich trwałości przy dłuższych czasach, rzędu kilkudziesięciu minut.
Jest to stuprocentowy, zeroemisyjny samochód. Do napędu służy silnik elektryczny, którego moc w porównaniu do aut spalinowych podaje się w kilowatach (kW). Aby silnik był w stanie napędzać samochód, potrzebne są baterie (najczęściej litowo-jonowe).W miarę jak ciche obroty pojazdów elektrycznych stopniowo zastępują warkot i szkodliwe dymy silników spalinowych, zachodzą liczne zmiany. Charakterystyczny zapach stacji benzynowych zniknie na rzecz bezwonnych stacji ładowania, gdzie samochody mogą doładować swoje baterie. W międzyczasie generatory gazowe mogą zostać zmodernizowane, by pomieścić akumulatory, które pewnego dnia będą mogły zasilać całe miasta energią odnawialną – pisze Allison Hirschlag dla BBC Future. Ta zelektryfikowana przyszłość jest znacznie bliżej niż mogłoby się wydawać. General Motors ogłosił na początku tego roku, że planuje zaprzestać sprzedaży pojazdów napędzanych gazem do 2035 roku. Celem Audi jest zaprzestanie ich produkcji do roku 2033, a wiele innych dużych firm samochodowych idzie w jego ślady. W rzeczywistości, według BloombergNEF, dwie trzecie światowej sprzedaży pojazdów osobowych będzie miało napęd elektryczny do 2040 roku. Systemy sieciowe na całym świecie szybko się rozwijają dzięki postępowi w technologii magazynowania energii w akumulatorach. Choć może się to wydawać idealnym rozwiązaniem, jest jeden duży problem. Obecnie baterie litowo-jonowe (Li-ion) są typowymi bateriami stosowanymi w pojazdach elektrycznych i mega-akumulatorach używanych do przechowywania energii ze źródeł odnawialnych, a baterie te są trudne do recyklingu. Co z recyklingiem baterii litowo-jonowych? Wraz z rosnącym popytem na pojazdy elektryczne, recykling baterii Li-ion stanie się wyzwaniem dla przemysłu akumulatorowego i motoryzacyjnego. Najpowszechniej stosowane metody recyklingu bardziej tradycyjnych akumulatorów (np. akumulatory kwasowo-ołowiowe) nie sprawdzają się w przypadku akumulatorów Li-ion. Te ostatnie są zazwyczaj większe, cięższe, dużo bardziej skomplikowane, a nawet niebezpieczne, jeśli zostaną źle rozebrane. Zazwyczaj części akumulatorów są rozdrabniane na proszek, a następnie proszek ten jest topiony lub rozpuszczany w kwasie. Ale baterie litowo-jonowe składają się z wielu różnych części, które mogą eksplodować, jeśli nie zostaną ostrożnie rozmontowane. A nawet jeśli zostaną rozłożone, produkty nie są łatwe do ponownego wykorzystania. Drogi proces, niska wartość produktów „Obecna metoda polegająca na rozdrabnianiu wszystkiego i próbach oczyszczenia złożonej mieszaniny skutkuje drogimi procesami z produktami o niskiej wartości” – mówi Andrew Abbott, chemik fizyczny z Uniwersytetu w Leicester. W rezultacie recykling kosztuje więcej niż wydobycie litu w celu wyprodukowania nowych. Ponadto, ponieważ tanie sposoby recyklingu baterii litowych na dużą skalę są opóźnione, tylko około 5 proc. baterii litowych jest poddawanych recyklingowi na całym świecie – większość z nich po prostu się marnuje. Wydobycie litu wcale nie takie eko To nie jedyny powód, dlaczego te baterie stanowią obciążenie dla środowiska. Wydobycie różnych metali potrzebnych do produkcji baterii Li-ion wymaga ogromnych zasobów. Do wydobycia jednej tony litu potrzeba ponad 2 mln litrów wody. W Chile, na solnisku Salar de Atacama, wydobycie litu zostało powiązane z zanikiem roślinności, wyższymi temperaturami w ciągu dnia i rosnącymi warunkami suszy na obszarach rezerwatów narodowych. Choć pojazdy elektryczne mogą przyczynić się do zmniejszenia emisji dwutlenku węgla w całym okresie ich użytkowania, zasilające je akumulatory rozpoczynają swoje życie z dużym śladem ekologicznym. Jeśli jednak miliony baterii Li-ion, które rozładują się po około 10 latach użytkowania, zostaną poddane bardziej efektywnemu recyklingowi, pomoże to zneutralizować cały ten wydatek. Kilka laboratoriów pracuje nad udoskonaleniem bardziej efektywnych metod recyklingu, tak aby w końcu standardowy, przyjazny dla środowiska sposób recyklingu baterii litowo-jonowych był gotowy do zaspokojenia gwałtownie rosnącego popytu. Nie możemy dłużej traktować akumulatorów jako jednorazowego użytku. Jak utylizować baterie Li-ion? Ogniwo baterii Li-ion ma metalową katodę, czyli dodatnią elektrodę, która zbiera elektrony podczas reakcji elektrochemicznej, wykonaną z litu i mieszanki pierwiastków, do których zazwyczaj należą kobalt, nikiel, mangan i żelazo. Posiada również anodę, czyli elektrodę, która uwalnia elektrony do obwodu zewnętrznego, wykonaną z grafitu, separator oraz pewnego rodzaju elektrolit, który jest medium transportującym elektrony pomiędzy katodą a anodą. Jony litu przemieszczające się od anody do katody tworzą prąd elektryczny. Metale w katodzie są najcenniejszymi częściami baterii i to na nich chemicy skupiają się podczas demontażu baterii Li-ion, aby je zachować i odnowić. Usprawnienie recyklingu akumulatorów Li, a w konsekwencji umożliwienie ponownego wykorzystania ich części, przywróci wartość już dostępnym akumulatorom. Dlatego właśnie naukowcy popierają proces bezpośredniego recyklingu – może on dać drugie życie najcenniejszym częściom baterii. Mogłoby to w znacznym stopniu zrównoważyć energię, odpady i koszty związane z ich produkcją. Jednak demontaż baterii Li-ion jest obecnie wykonywany głównie ręcznie w warunkach laboratoryjnych, co będzie musiało się zmienić, jeśli bezpośredni recykling ma konkurować z bardziej tradycyjnymi metodami recyklingu. „W przyszłości trzeba będzie wprowadzić więcej technologii do demontażu” – mówi Abbott. „Jeśli bateria jest montowana przy użyciu robotów, logiczne jest, że musi być demontowana w ten sam sposób” – dodaje. Zespół Abbotta z Faraday Institution w Wielkiej Brytanii prowadzi badania nad zrobotyzowanym demontażem baterii Li-ion w ramach projektu ReLib, który specjalizuje się w recyklingu i ponownym wykorzystaniu akumulatorów. Według badań zespołu, ultradźwiękowa metoda recyklingu może przetworzyć 100 razy więcej materiału w tym samym czasie niż bardziej tradycyjna metoda hydrometalurgii. Abbott twierdzi również, że można to zrobić za mniej niż połowę kosztów wytworzenia nowej baterii z pierwotnego materiału. Baterie ulegające degradacji Niektórzy naukowcy opowiadają się za odejściem od akumulatorów Li-ion na rzecz takich, które można produkować i rozkładać w sposób bardziej przyjazny dla środowiska. Jodie Lutkenhaus, profesor inżynierii chemicznej na Texas A&M University, pracuje nad akumulatorem wykonanym z substancji organicznych, które mogą ulegać degradacji na polecenie. Argumentuje, że nawet gdy bateria Li-ion zostanie rozebrana, a jej części zostaną odnowione, nadal pozostaną pewne części, których nie da się uratować i staną się odpadem. Akumulator degradowalny, taki jak ten, nad którym pracuje zespół Lutkenhaus, mógłby być bardziej zrównoważonym źródłem energii. Baterie organiczno-radiowe (ORB) istnieją od lat 2000 i funkcjonują dzięki materiałom organicznym, które są syntetyzowane w celu przechowywania i uwalniania elektronów. Zespół wykorzystuje kwas do rozkładu ORB na aminokwasy i inne produkty uboczne, jednak aby części uległy właściwemu rozkładowi, muszą panować odpowiednie warunki. „Odkryliśmy, że kwas w podwyższonej temperaturze działa” mówi Lutkenhause. Przed degradowalną baterią stoi jednak wiele wyzwań. Materiały potrzebne do jej stworzenia są drogie, a ponadto nie jest ona jeszcze w stanie zapewnić takiej ilości energii, jaka jest wymagana w zastosowaniach o dużym zapotrzebowaniu, takich jak pojazdy elektryczne i sieci energetyczne. Segregacja baterii Baterie Li-ion są wykorzystywane do zasilania wielu różnych urządzeń, od laptopów, przez samochody, po sieci energetyczne, a ich skład chemiczny różni się w zależności od celu, czasami znacząco. Powinno to znaleźć odzwierciedlenie w sposobie ich recyklingu. Naukowcy twierdzą, że zakłady recyklingu baterii muszą oddzielnie segregować baterie litowo-jonowe, podobnie jak sortuje się różne rodzaje plastiku podczas recyklingu, aby proces ten był najbardziej efektywny. Na rynek powoli, ale nieuchronnie wkraczają bardziej zrównoważone baterie. Producenci samochodów elektrycznych zaczęli również ponownie wykorzystywać swoje własne akumulatory na wiele różnych sposobów. Na przykład Nissan odnawia stare akumulatory do samochodów Leaf i umieszcza je w zautomatyzowanych pojazdach z napędem, które dostarczają części do jego fabryk. Przyszłe wyzwania Stale rosnące zapotrzebowanie rynku na pojazdy elektryczne sprawia, że firmy z całego przemysłu motoryzacyjnego wydają miliardy dolarów na zwiększenie trwałości akumulatorów Li-ion. Jednak Chiny są obecnie zdecydowanie największym producentem akumulatorów litowo-jonowych. Z kolei wykorzystanie technologii sztucznej inteligencji do odnawiania najbardziej użytecznych części mogłoby pomóc krajom o niewielkich dostawach komponentów do baterii Li-ion, aby nie musiały one tak bardzo polegać na Chinach. Opracowanie nowych baterii, które mogłyby konkurować z bateriami Li, również prawdopodobnie wstrząśnie branżą poprzez stworzenie zdrowej konkurencji. Pojawienie się mniej skomplikowanego, bezpieczniejszego akumulatora, który jest tańszy w produkcji i łatwiejszy do oddzielenia po zakończeniu eksploatacji, stanowi ostateczną odpowiedź na obecny problem zrównoważonego rozwoju pojazdów elektrycznych. Jednak do czasu pojawienia się takiej baterii, standaryzacja recyklingu baterii Li-ion jest znaczącym krokiem we właściwym kierunku – podsumowuje BBC Future. Baterie stanu stałego przewodzą jony litowe za pomocą stałej warstwy, w przeciwieństwie do typowych baterii litowo-jonowych, które wykorzystują elektrolity ciekłe. Eksperci Empa udoskonalili stały elektrolit znany jako tlenek lantanu cyrkonu litu (LLZO), który ma wysoką przewodność jonową i stabilność chemiczną. W kolejnych latach należy oczekiwać zarówno spadku cen, jak i znacznego postępu technologicznego w obszarze akumulatorów do pojazdów elektrycznych – wynika z analizy międzynarodowej firmy doradczej Frost & Sullivan, która podsumowała najważniejsze trendy na światowym rynku baterii do EV. Baterie litowo-jonowe, mimo wielu zalet, z powodu wysokich kosztów zakupu i stosunkowo ograniczonej wydajności, nie są idealnym rozwiązaniem. Paradoksalnie, konieczność ich stosowania przyczynia się do wyhamowania tempa rozwoju elektromobilności na świecie. Według różnych szacunków, baterie odpowiadają dziś za nawet 50% ceny przeciętnego samochodu elektrycznego i sprawiają, że EV są zazwyczaj znacznie droższe od swoich spalinowych odpowiedników. „W niedalekiej przyszłości nastąpi jednak gwałtowny zwrot na rynku. Do 2020 r. ceny baterii spadną o ponad 40% względem poziomu obecnego. W konsekwencji samochody elektryczne będą stopniowo tanieć i zyskiwać na popularności wśród kierowców” – mówi konsultant działu Mobility F&S Ivan Kondratenko. Prawdziwy przełom nastąpi jednak wraz z komercjalizacją baterii ze stałym elektrolitem – bezpieczniejszych i znacznie wydajniejszych niż akumulatory litowo-jonowe. Według zapowiedzi niektórych producentów, baterie tego rodzaju zapewnią 2,5-raza większą gęstość energii i zwiększą zasięg samochodów elektrycznych do nawet 800 km na jednym ładowaniu. Ich produkcja na skalę masową rozpocznie się w ciągu najbliższej dekady. Prace nad bateriami ze stałym elektrolitem prowadzą obecnie zarówno szerzej nieznane start-upy, jak i wielkie koncerny motoryzacyjne z BMW i Toyotą na czele. „Rewolucja w świecie akumulatorów sprawi, że już za kilka lat pojazdy elektryczne staną się nie tylko bardziej konkurencyjne cenowo, ale również bezpieczniejsze i praktyczniejsze w codziennym użytkowaniu” – zauważa Maciej Mazur z Polskiego Stowarzyszenia Paliw Alternatywnych. PXns.